
General: In this project, our goal is to step-by-step develop a navigation and guidance
system that achieves automated landing of an autonomous unmanned aerial vehicle (drone)
onto a fixed-wing aircraft that moves on a circular holding pattern. This project aims to
illustrate how to design navigation techniques and navigation-based guidance techniques
using linear and feedback-linearization tools.

Honor Code: You are to do your own work. Discussing the project with a friend is fine.
Sharing code is not allowed.

Overview

An autonomous drone is tasked to perform environmental monitoring by collecting data such
as temperature, humidity, and wind speed using on-board sensors. At some time tw > t0,
the battery level drops below a known safety-critical limit. To recharge, the drone has to
land on a fixed-wing aircraft that is loitering nearby. However, the communication of the
drone with the fixed-wing aircraft has been lost at some time tc, where t0 < tc < tw. In other
words, the drone can not receive information about the states of the aircraft for t > tc, and
the only available information to the drone about the states of the aircraft is the history of
measurements in the time interval [t0, tc]. In this project, our goal is to step-by-step develop
a complete navigation and guidance protocol for this drone to land on the fixed-wing aircraft
using the available information from the on-board sensors so that it can charge its battery
and resume its monitoring task.

Problem 1 (25 points) The fixed-wing aircraft is loitering at altitude z = za0. The equa-

tions of motion are given as:

ẋa = va cos(Âa), xa(0) = xa0, (1a)
ẏa = va sin(Âa), ya(0) = ya0, (1b)
ża = 0, za(0) = za0, (1c)

Â̇a = va

fl
, Âa(0) = Âa0, (1d)

where va is the constant speed of the aircraft, and fl is the constant radius of the circle

on which the aircraft is moving. The drone receives the position (xa(t), ya(t), za(t)) and the

heading Âa(t) of the aircraft at times t that belong to the time interval [t0, tc], i.e.,

Ya(t) = [xa(t), ya(t), za(t), Âa(t)]T , t œ [t0, tc]. (2)

Let a set of sensor data obtained at N distinct time instances ti, i œ {1, . . . , N} be denoted

as H =
Ë
Ya(t1), Ya(t2), ... Ya(tN)

È
.
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(a) Problem Setup (3D view)
(b) Problem Setup (Top View)

(a) (5 points) Provide closed-form expressions for the state trajectories of system (1).

(b) (10 points) Let us denote the initial conditions in (1) as q1, q2, q3, q4, the aircraft speed as

q5, and the radius of the circular path as q6. Given a history H of perfect measurements,

provide a method to determine the parameters (q1, q2, ..., q6) of the aircraft’s trajectory.

(c) (10 points) In practice, however, sensors provide noisy data. Assume that the mea-

surement vector Ya(ti), i œ {1, . . . , N}, is corrupted by a zero-mean, additive Gaus-

sian noise vector ⇠ = [›x, ›y, ›z, ›Â]T , with uncorrelated components whose variances are

‡2
›x

, ‡2
›y

, ‡2
›z

, ‡2
›Â

, respectively. Perform an error analysis for the estimates (q̂1, q̂2, q̂3, q̂4, q̂5, q̂6)
obtained from part (b). In other words, provide the expected value and the covariance

matrix of the estimation error, using the history of measurements H.

Problem 2 (22 points) You are given measurement histories of the fixed-wing aircraft un-

der the following di�erent scenarios along with the covariances of the respective measurement

noises and the true parameters of the trajectories.

(i) scenario 1: aircraftData1.mat (‡2
›x

= ‡2
›y

= (2.7)2
, ‡2

›z
= (1.2)2

, ‡2
›Â

= (0.02)2
, N = 50)

(ii) scenario 2: aircraftData2.mat (‡2
›x

= ‡2
›y

= (3)2
, ‡2

›z
= (2)2

, ‡2
›Â

= (0.05)2
, N = 50)

(iii) scenario 3: aircraftData3.mat (‡2
›x

= ‡2
›y

= (2.7)2
, ‡2

›z
= (1.2)2

, ‡2
›Â

= (0.02)2
, N =

150)
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(a) (12 points) For each one of the above cases, provide the estimates (q̂1, q̂2, ..., q̂6) of the

parameters (q1, q2, ..., q6) of the aircraft trajectories, expected values (µq̃1 , µq̃2 , ..., µq̃6) and

the variances (‡2
q̃1 , ‡2

q̃2 , ..., ‡2
q̃6) of the estimation errors (q̃1, q̃2, ..., q̃6) of the parameters,

where q̃i = qi ≠ q̂i, ’i œ {1, 2, ..., 6}.

(b) (4 points) Plot the x and y position coordinates of the aircraft: 1) on the actual trajectory

obtained in Problem 1(a) using the true parameters provided, 2) from the measurement

data, and 3) on the estimated trajectory obtained using the mean values of the parameters

that you estimated in part (a), for all scenarios. For each scenario, plot the resulting 3

paths on the x-y plane in a single figure. (So, you have to provide a total of three figures

in your report).

(c) (6 points) Compare and comment on the quality of the estimates for the three cases, i.e.,

compare the variances of the estimation errors of each case. Compare the plots in part

(b). How does the number of measurements N in the history H a�ect the estimates?

Note: Read the Readme.txt file for more details about the data arrangement in the MATLAB

data files.

Problem 3 (10 points) The equations of motion of the drone are given as:

ṙ = v
v̇ = u ≠ Cdv (3)

where r = [x, y, z]T and v = [vx, vy, vz]T are the position and velocity vectors, and u is

the acceleration input of the drone, all resolved in an inertial frame. Cd is a known drag

coe�cient. Position measurements that are corrupted by a zero-mean, Gaussian noise ✏ with

covariance matrix R‘ are available:

Y = r + ✏, (4)
where ✏ = N (0, R‘). Design a (continuous-time) Kalman filter to estimate the full state

vector X =
C
r
v

D

.

Problem 4 (25 points) We now consider that the drone needs to approach the aircraft and

land on its surface at location rl = [xa, ya, za + zl]T , where zl is an o�set from the aircraft’s

center of mass.

(a) (15 points) Assuming that the drone has perfect knowledge of its full state vector X,

design a state-feedback guidance law using the full state X and the perfect knowledge of

the trajectory of the fixed-wing aircraft obtained in the Problem 1(b), so that the drone

approaches the landing point rl.
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(b) (10 points) We now recall that the drone has noisy measurements of its position r, and

that it does not directly measure its velocity v. So, consider that the drone uses the

estimate X̂, instead of the actual value of the state X in the guidance law that you

designed in Problem 4(a). Provide the di�erential equations governing the dynamics of

the guidance error ”X = X ≠

C
rl

ṙl

D

and the estimation error X̃ = X ≠ X̂.

Hint: For part (a), you can use the idea of forcing the dynamics of the system follow a desired

trajectory by choosing the control action appropriately, as was done in velocity-to-be-gained

guidance. Read the chapter 7 in the main textbook (Fundamentals of Aerospace Navigation

and Guidance) for more details on this.

Problem 5 (18 points) (a) (3 points) Simulate the dynamics of the drone and the aircraft

by implementing the controller that you designed in Problem 4(b) for the scenario 1 in

Problem 2 with the initial condition r̂(0) = [13, 12, 112]T m, v̂(0) = [0, 0, 0]T m/s. Use

the true parameters of the aircraft’s trajectory, that are provided in the data files, for

this sub-problem. In your report, include the plots for the error in drone’s position r
and the landing position rl = [xa, ya, za +zl]T , and for the error between drone’s velocity

v and landing site’s velocity ṙl = va = [ẋa, ẏa, ża]T . Use the following numerical data

for simulation purpose: Cd = 0.1, zl = 4 m,

R‘ =

S

WU
1 0 0
0 1 0
0 0 0.8

T

XV , Pr(0) =

S

WU
0.9 0 0
0 0.8 0
0 0 0.5

T

XV , Pv(0) =

S

WU
0.2 0 0
0 0.2 0
0 0 0.2

T

XV , (5)

where Pr(0) and Pv(0) are the covariances of r(0) and v(0). Assume r(0) and v(0) are

jointly Gaussian and uncorrelated.

(b) (4 points) Assume that you use the steady-state Kalman gain in your Kalman filter in

Problem 5(a); then, what is the steady-state covariance matrix, P”X, for the guidance

error ”X?

(c) (6 points) Now assume that the drone uses the estimated trajectory of the aircraft that

you obtained using the parameters you estimated in Problem 2(a), instead of the ac-

tual aircraft trajectory information, in the feedback control law you designed. Plot the

trajectories of the error r ≠ rl and v ≠ ṙl for scenario 1 and scenario 2.

(d) (5 points) Is the error between the drone’s position and the landing position bounded for

scenario 1 in Problem 5 (c)? If yes, provide the bound on this error. If not, explain

why. How does the error compare in scenario 1 and scenario 2?

(You can use the animateTraj.m script that is provided on CANVAS for visualization.)
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Page 1 
A) 

 Scenario 1 Scenario 2 Scenario 3 
Condition ! "# ! "# ! "# 
$% = 	()* 499.39 0.454 499.94 0.77 500.12 0.263 
$+ = 	,)* 0.910 .344 1.27 0.47 0.32 0.22 
$- = 	,)* 0.167 0.018 0.28 0.05 0.03 9.6 ∗ 104- 
$5 = 	6)* 1.57 9.7 ∗ 1048 1.57 2.2 ∗ 104: 1.57 2.5 ∗ 1048 
$: = 	<) 21.95 8.1 ∗ 1045 21.94 1.1 ∗ 104- 21.99 2.0 ∗ 1045 
$8 = 	> 498.11 2.74 499.77 5.96 499.89 0.164 

 
B) 
The ?@A = 	B%+C%+  
Covariance matrix of the guidance error in scenario 1 is zero.  
  















  Michael Levy 

  AERO 584 Final Project 

   12/13/19 

                                                                                                                                                                

Page 8 

Problem 2 
PART A) 
See the above table for the rest of the values for this problem. The expected values of the 

estimation error as shown in problem 1 C is zero due to the fact of our covariance mean is zero.  

 
PART B) 
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PART C) 
First off, I will compare the estimates from scenario one to scenario three. These two estimates 

had the same covariance matrices, however, scenario three had a larger amount of 

measurement samples. The variances in scenario three were always lower. This means that 

with a larger amount of measurements comes an increased confidence in your values. This 

follows along with our intuition with MLE that the more estimates you add reduces the trace of 

the covariance matrix.  

Second, the estimates from scenario one and two show how the same number of 

measurements with different covariances change the user’s confidence in the values found. 

Scenario two had larger variances in the measurements and the final values ended up having 

larger variances.  
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Problem 5 
PART A) 
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Problem 5 
PART C) 
In part C I used the estimate of the plane’s initial states in my Kalman filter. I then found the 

difference between the position of the drone and then true trajectory of the plane using the q* 

estimates. Below are Scenario 1 and 2.  
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Problem 1 
clc 
clear 
clf 
close all 
load("aircraftData1.mat"); 
set(groot,'defaultfigureposition',[600 300 900 900]); 
  
% % THIS CODE WAS USED FOR PROBLEM 1 
  
% Initial Values 
N = length(aircraftData.t); 
  
% Initial Guess + 
q_old = [470; 0.5; 0.2; 1.1; 24; 520]; 
  
% Pre-allocate 
jacob = zeros(4 * N, 6); 
y = zeros(4 * N, 1); 
g = zeros(4 * N, 1); 
Rv_matrix = zeros(4 * N, 4 * N);  
flg = 0;  
  
% MLE To calculate initial states  
while(flg == 0) 
    for i = 1:N 
        jacob(4 * i - 3 : 4 * i, :) = jacobian1(q_old.', aircraftData.t(i)); 
        y(4 * i - 3 : 4 * i, 1) = aircraftData.Ya(:,i); 
        g(4 * i - 3 : 4 * i, 1) = states(q_old.', aircraftData.t(i));   
    end 
    q_new = q_old + pinv(jacob) * (y - g); 
  
    if abs(q_new - q_old) < .00001 
        flg = 1; 
    end 
    q_old = q_new; 
end 
  
  
  
% Part 2b 
  
% Calculate Aircraft Parameters with Known initial states 
states1 = zeros(N,4); 
states2 = zeros(N, 4); 
states3 = zeros(N, 4);  
for i = 1:N 
    states1(i,:) = states(aircraftData.q_star, aircraftData.t(i)); 
    states2(i,:) = states(q_new, aircraftData.t(i));  
end 
  
% Calculate Covariance of Estimate 
Rv_inv = inv(aircraftData.R_xi); 
  
for i = 1: N 
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    Rv_matrix(4 * i - 3 : 4 * i, 4 * i - 3 : 4 * i) = Rv_inv;  
end 
  
covariance = inv(jacob.' * Rv_matrix * jacob);  
  
% Pre-allocate (essentially erase) 
jacob1 = zeros(4 * N, 6); 
y1 = zeros(4 * N, 1); 
g1 = zeros(4 * N, 1); 
  
q_old = [470; 0.5; 0.2; 1.1; 24; 520]; 
  
% Calculate y_hat  
count = 0; 
flg = 0;  
while(flg == 0) 
    for i = 1:N 
        jacob1(4 * i - 3 : 4 * i, :) = jacobian1(q_old.', aircraftData.t(i)); 
        y1(4 * i - 3 : 4 * i, 1) = aircraftData.Ya(:,i); 
        g1(4 * i - 3 : 4 * i, 1) = states(q_old.', aircraftData.t(i)); 
    end 
     
    q_new1 = q_old + inv(jacob1.' * Rv_matrix * jacob1) * jacob1.' * 
Rv_matrix * (y1 - g1); 
  
    if abs(q_new1 - q_old) < .0000000000001 
        flg = 1; 
    end 
    q_old = q_new1; 
    count = count + 1;  
end 
  
for i = 1:N 
    states3(i,:) = states(q_new1, aircraftData.t(i));   
end 
  
Diagg = diag(covariance); 
  
  
figure(1)  
plot(states1(:,1),states1(:,2),'LineWidth', 1) 
hold on  
plot(aircraftData.Ya(1,:), aircraftData.Ya(2,:),'LineWidth',1,'LineStyle','--
') 
plot(states3(:,1), states3(:,2),'--','color','g') 
save('state_estimate','q_new1');  
  
% Compare initial states 
names = {'KNOWN INITIAL STATE', 'MEAN VALUE','VARIANCE'}; 
vals = table(aircraftData.q_star, q_new1, Diagg, 'VariableNames',names); 
disp(vals) 
  
% Labels 
title('X & Y COORDINATES OF AIRCRAFT (SCENARIO 3)','FontSize', 
25,'FontWeight','bold'); 
xlabel('X COORDINATES','FontSize', 25,'FontWeight','bold'); 
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ylabel('Y COORDINATES', 'FontSize', 25,'FontWeight','bold'); 
legend({'TRUE PARAMETERS','MEASUREMENT DATA','ESTIMATED 
TRAJECTORY'},'FontSize', 13,'FontWeight','bold','Location','NE'); 
grid on 
  
 
function [A] = jacobian1(q,t) 
% Pulls in current states and time  
% Returns Jacobian at that time 
  
q1 = q(1); 
q2 = q(2); 
q3 = q(3); 
q4 = q(4); 
q5 = q(5);  
q6 = q(6);  
  
A = [1, 0, 0, q6*(cos(q4 + (q5*t)/q6) - cos(q4)), t*cos(q4 + (q5*t)/q6), 
sin(q4 + (q5*t)/q6) - sin(q4) - (q5*t*cos(q4 + (q5*t)/q6))/q6; 
    0, 1, 0, q6*(sin(q4 + (q5*t)/q6) - sin(q4)), t*sin(q4 + (q5*t)/q6), 
cos(q4) - cos(q4 + (q5*t)/q6) - (q5*t*sin(q4 + (q5*t)/q6))/q6; 
    0, 0, 1,0,0,0; 
    0, 0, 0,1,t/q6,-(q5*t)/q6^2]; 
  
end 
  
 
function [res] = states(q,t) 
% This function calculates your state at a specific time  
  
  
q1 = q(1); 
q2 = q(2); 
q3 = q(3); 
q4 = q(4); 
q5 = q(5);  
q6 = q(6);  
w = q5/q6;  
x_a = q6 * (sin(w * t + q4) - sin(q4)) + q1; 
y_a = q6 * (cos(q4) - cos(w * t + q4)) + q2; 
z_a = q3;  
phsi_a = w * t + q4;  
  
res = [x_a; y_a; z_a; phsi_a]; 
  
end 
  
 
Problem 5 
clc 
clear 
clf 
close all 
set(groot,'defaultfigureposition',[600 300 900 900]); 
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% THIS CODE WAS USED FOR PROBLEM 5 
  
% This pulls in the q_hat estimate from problem 1 (ie run script 1 with the 
% data set you want and then run this script.  
q_new = load('state_estimate');  
  
% Define Initial Variables 
nameofData = "aircraftData2.mat"; 
load(nameofData); 
dt = .1; 
t = 0:dt:300; 
N = length(t); 
z_l = 4; 
c_D = .1; 
  
% Calculate F gains for Guidance Law 
A = [zeros(3), eye(3);zeros(3), -c_D * eye(3)]; 
B = [zeros(3); eye(3)]; 
% poles = [-1.1 -1.3 -1 -1.18 -1.45 -1.2]; 
poles = [-.1 -.3 -.12 -.18 -.45 -.2]; 
F = place(A, -B, poles); 
  
% Find Nominal State X_o for all times (plane) with q* data 
% Problem 5A 
plane_q_nominal = aircraftData.q_star + [0; 0; z_l; 0; 0; 0]; 
  
% Find the nominal state X_o with q_hat estimation 
% Problem 5C 
plane_q = q_new.q_new1 + [0; 0; z_l; 0; 0; 0];  
  
% Preallocate 
x_plane = zeros(6, N); 
x_plane_c = zeros(6, N);  
u_plane = zeros(3, N); 
u_plane_c = zeros(3,N);  
x_plane2 = zeros(4, N); 
  
for i = 1:N 
    %     5A 
    %     Find Nominal Position of Plane 
    x_plane(:,i) = states2(plane_q_nominal, t(i)); 
     
    %     Find Nominal Thrust Input of Plane 
    u_plane(:,i) = acceleration_plane(plane_q_nominal, t(i)); 
    %     5C 
    %     Find Position of Plane based on Guess 
    x_plane_c(:,i) = states2(plane_q, t(i));  
     
    %     Find Thrust Input of Plane 
    u_plane_c(:,i) = acceleration_plane(plane_q, t(i)); 
     
    
    %     Nominal Plane States for video 
    x_plane2(:,i) = states(plane_q_nominal, t(i)); 
end 
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% Using given q* 
[x_drone, u_drone, dx] = wrapper_final(nameofData,x_plane,u_plane,F, N, dt); 
  
% Using calculated q_hat 
[x_drone_c, u_drone_c, dx_guess] = 
wrapper_final(nameofData,x_plane_c,u_plane_c,F, N, dt); 
  
% PART A PLOT  
figure(1)  
sgtitle('Problem 5A (SCENARIO 1)','FontSize', 30,'FontWeight','bold'); 
% POSITION 
subplot(2,1,1) 
plot(t,dx(1,:),'LineWidth',2) 
hold on 
plot(t,dx(2,:),'LineWidth',2) 
plot(t,dx(3,:),'LineWidth',2) 
  
title('ERROR IN DRONE POSITION','FontSize', 25,'FontWeight','bold'); 
xlabel('TIME (s)','FontSize', 25,'FontWeight','bold'); 
ylabel('POSSITION ERROR', 'FontSize', 25,'FontWeight','bold'); 
legend({'\DeltaX','\DeltaY','\DeltaZ'},'FontSize', 
13,'FontWeight','bold','Location','NE'); 
% VELOCITY 
subplot(2,1,2) 
plot(t,dx(4,:),'LineWidth',2) 
hold on 
plot(t,dx(5,:),'LineWidth',2) 
plot(t,dx(6,:),'LineWidth',2) 
  
title('ERROR IN DRONE VELOCITY','FontSize', 25,'FontWeight','bold'); 
xlabel('TIME (s)','FontSize', 25,'FontWeight','bold'); 
ylabel('VELOCITY ERROR', 'FontSize', 25,'FontWeight','bold'); 
legend({'\DeltaV_x','\DeltaV_y','\DeltaV_z'},'FontSize', 
13,'FontWeight','bold','Location','NE'); 
 
figure(2)  
sgtitle('Problem 5C (SCENARIO 1)','FontSize', 30,'FontWeight','bold'); 
% POSITION 
subplot(2,1,1) 
plot(t,dx_c(1,:),'LineWidth',1) 
hold on 
plot(t,dx_c(2,:),'LineWidth',1) 
plot(t,dx_c(3,:),'LineWidth',1) 
  
title('ERROR IN DRONE POSITION','FontSize', 25,'FontWeight','bold'); 
xlabel('TIME (s)','FontSize', 25,'FontWeight','bold'); 
ylabel('POSSITION ERROR', 'FontSize', 25,'FontWeight','bold'); 
legend({'\DeltaX','\DeltaY','\DeltaZ'},'FontSize', 
13,'FontWeight','bold','Location','NE'); 
% VELOCITY 
subplot(2,1,2) 
plot(t,dx_c(4,:),'LineWidth',1) 
hold on 
plot(t,dx_c(5,:),'LineWidth',1) 
plot(t,dx_c(6,:),'LineWidth',1) 
  
title('ERROR IN DRONE VELOCITY','FontSize', 25,'FontWeight','bold'); 
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xlabel('TIME (s)','FontSize', 25,'FontWeight','bold'); 
ylabel('VELOCITY ERROR', 'FontSize', 25,'FontWeight','bold'); 
legend({'\DeltaV_x','\DeltaV_y','\DeltaV_z'},'FontSize', 
13,'FontWeight','bold','Location','NE'); 
 
function [x_drone, u_drone, dx] = wrapper_final(nameofData,x_plane,u_plane,F, 
N, dt) 
  
% THIS CODE WAS USED FOR PROBLEM 5 
  
load(nameofData);  
  
% Preallocate 
  
x_drone = zeros(6, N); 
dx = zeros(6, N); 
du = zeros(3, N); 
u_drone = zeros(3,N); 
  
  
% Find X for all times (drone) 
x_drone(:,1) = [13 12 112 0 0 0].'; 
u_drone(:,1) = [.4 .6 .5].'; 
dx(:,1) = x_drone(:,1) - x_plane(:,1); 
p_drone = [ [.9 0 0; 0 .8 0; 0 0 .5], zeros(3); zeros(3) .2 * eye(3)]; 
  
  
  
for i = 2:N 
    %     calculate position/covariance of drone 
    [x_drone(:,i), p_drone] = kalman(x_drone(:,i-1), u_drone(:,i-1), p_drone, 
dt); 
     
    % Find dx (drone - plane) 
    dx(:,i) = x_drone(:,i) - x_plane(:,i); 
     
    % Find du based on F * dx 
    du(:,i) = F * dx(:,i); 
     
    %     update u_drone 
    u_drone(:,i) = du(:,i) + u_plane(:,i); 
end 
  
  
end 
  
 
function [x_k, P_k] = kalman(x_prior, u_prior, P_prior, T) 
  
% THIS CODE WAS USED FOR PROBLEM 5 
  
% Given Value  
C_d = .1;  
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% Prior Estimates 
phi_k = [eye(3), T * eye(3); zeros(3),eye(3)*(1-C_d*T)]; 
B = [zeros(3); T*eye(3)];  
C = [eye(3), zeros(3)]; 
Rv = [1 0 0; 0 1 0;0 0 .8]; 
  
% Estimate Y_k  
x = droneDynamics(x_prior,u_prior,T); 
y_k = C * x + [normrnd(0,1,1);normrnd(0,1,1);normrnd(0, .8,1)];  
  
% Prediction  
x_guess = phi_k * x_prior + B * u_prior;  
p_guess = phi_k * P_prior * phi_k.';  
  
% Kalman Gain  
K_k = p_guess * C.'* inv(C * p_guess * C.' + Rv); 
  
% Update estiamte with y_k measurement  
x_k = x_guess + K_k * (y_k - C * x_guess); 
  
% Update Error Covariance  
P_k = (eye(6) - K_k * C) * p_guess;  
  
end 
 
function [res] = states2(q,t) 
% This function calculates your state at a specific time  
q1 = q(1); 
q2 = q(2); 
q3 = q(3); 
q4 = q(4); 
q5 = q(5);  
q6 = q(6);  
w = q5/q6;  
  
% Calculate Position Based on Integrated Velocity 
x_a = q6 * (sin(w * t + q4) - sin(q4)) + q1; 
y_a = q6 * (cos(q4) - cos(w * t + q4)) + q2; 
z_a = q3; 
  
% Calculate Velocity Based on Closed Form Equations Given 
Vx = q5 * cos(w * t + q4); 
Vy = q5 * sin(w * t + q4);  
Vz = 0;  
  
  
res = [x_a; y_a; z_a; Vx; Vy; Vz]; 
  
end 
  
 
 


